Phase Equilibrium

Vapor Pressure

Calculate vapor pressures using Antoine equation. Essential for flash calculations, storage tank design, and RVP blending.

Boiling point

VP = 1 atm

NBP where P = 760 mmHg.

RVP test

100°F

ASTM D323 standard.

Antoine accuracy

±1-3%

Within valid T range.

Use this guide to:

  • Calculate component vapor pressures.
  • Predict bubble/dew points.
  • Size tank vents and relief systems.

1. Fundamentals

Vapor pressure is the equilibrium pressure exerted by vapor over its liquid at a given temperature. Higher T → more molecules escape → higher VP.

Vapor pressure versus temperature curves for common hydrocarbons and water.
Vapor pressure vs. temperature curves for water and light hydrocarbons; intersections with 14.7 psia mark normal boiling points.

Temperature

Exponential rise

VP roughly doubles every 20°F.

Molecular weight

Lighter = higher VP

Propane > Butane > Octane.

Polarity

H-bonding lowers VP

Water VP lower than MW suggests.

Boiling point

VP = 1 atm

Definition of normal boiling point.

Key Relationships

Clausius-Clapeyron (approximate): ln(P₂/P₁) = (ΔHᵥₐₚ/R) × (1/T₁ - 1/T₂) Trouton's Rule (estimate ΔHᵥₐₚ): ΔHᵥₐₚ ≈ 10.5 × R × Tᵦₚ [kJ/mol] Where: R = 8.314 J/mol·K, T in Kelvin

2. Antoine Equation

Antoine Equation: log₁₀(P) = A - B/(C + T) Where: P = Vapor pressure (mmHg or bar, depends on constants) T = Temperature (°C or K, depends on constants) A, B, C = Compound-specific constants Unit conversion: mmHg → psia: divide by 51.715 mmHg → kPa: multiply by 0.13332 bar → psia: multiply by 14.504
Antoine equation accuracy regions across temperature ranges for different compounds.
Antoine equation accuracy regions: valid temperature ranges matter—outside them, use extended correlations or EOS.

Antoine Constants (NIST)

Compound A B C T Range (°C) P units
Methane 6.61184 389.93 266.00 -181 to -161 mmHg
Ethane 6.80266 656.40 256.00 -142 to -75 mmHg
Propane 6.82973 803.81 247.04 -108 to -25 mmHg
n-Butane 6.82485 935.86 238.73 -78 to 19 mmHg
i-Butane 6.78866 899.81 241.94 -83 to 7 mmHg
n-Pentane 6.87632 1075.82 233.36 -50 to 58 mmHg
n-Hexane 6.87601 1171.17 224.41 -25 to 92 mmHg
n-Heptane 6.89386 1264.37 216.64 -2 to 124 mmHg
n-Octane 6.91874 1351.99 209.15 19 to 152 mmHg
Water 8.07131 1730.63 233.43 1 to 100 mmHg
Methanol 8.08097 1582.27 239.73 15 to 84 mmHg
Ethanol 8.11220 1592.86 226.18 20 to 93 mmHg

Source: NIST Chemistry WebBook. Always verify T range before use.

Example: n-Butane at 100°F

T = 100°F = 37.8°C A = 6.82485, B = 935.86, C = 238.73 log₁₀(P) = 6.82485 - 935.86/(238.73 + 37.8) = 6.82485 - 3.3843 = 3.4405 P = 10^3.4405 = 2,758 mmHg = 53.3 psia → n-Butane at 100°F: VP = 53.3 psia (requires pressure vessel)

⚠ Do not extrapolate. Antoine accuracy degrades rapidly outside the valid temperature range. For extended ranges, use Wagner equation or EOS models.

3. Mixtures (Raoult's Law)

Raoult's Law (ideal mixtures): Pᵢ = xᵢ × Pᵢ° (partial pressure of component i) P_total = Σ(xᵢ × Pᵢ°) (bubble point pressure) yᵢ = xᵢ × Pᵢ° / P_total (vapor composition) Where: xᵢ = liquid mole fraction Pᵢ° = pure component vapor pressure at T yᵢ = vapor mole fraction
Raoult's Law P-x-y diagram for propane and butane showing bubble and dew curves.
Raoult's Law P-x-y diagram for propane/butane at fixed temperature: bubble and dew curves with vapor richer in the lighter component.

Example: 40% Propane / 60% n-Butane at 100°F

Given: x_C3 = 0.40, x_C4 = 0.60 P°_C3 = 188 psia, P°_C4 = 53 psia (at 100°F) Bubble point pressure: P = (0.40)(188) + (0.60)(53) = 75.2 + 31.8 = 107 psia Vapor composition: y_C3 = (0.40 × 188) / 107 = 0.70 (70% propane) y_C4 = (0.60 × 53) / 107 = 0.30 (30% butane) → Vapor enriched in propane (70% vs 40% in liquid) This drives distillation separation

Non-Ideal Mixtures

For polar/nonpolar mixtures, add activity coefficients:

Modified Raoult's Law: Pᵢ = xᵢ × γᵢ × Pᵢ° Where γᵢ = activity coefficient from: - Wilson, NRTL, UNIQUAC (polar systems) - Use process simulators for γᵢ values
System Type γ Value Recommended Model
Ideal (similar HCs) γ ≈ 1.0 Raoult's Law / Peng-Robinson
Slightly non-ideal γ = 0.8-1.2 Peng-Robinson with kij
Polar/nonpolar γ = 1.5-5+ NRTL, UNIQUAC
Aqueous alcohols γ = 2-10+ NRTL, Wilson
Azeotropes Variable NRTL with experimental data

4. Engineering Applications

Flash Calculations

Parameter Vapor Pressure Role
K-value (ideal) Kᵢ = Pᵢ°/P_system
Bubble point Σ(xᵢ × Kᵢ) = 1
Dew point Σ(yᵢ / Kᵢ) = 1
Flash drum sizing Higher VP → more vapor → larger diameter

Reid Vapor Pressure (RVP)

Parameter RVP TVP
Standard ASTM D323 ASTM D6378
Temperature 100°F (fixed) Actual storage T
V/L ratio 4:1 (fixed) Actual tank
Use Gasoline spec Tank venting
Typical gasoline 7-15 psi Varies with T

Summer gasoline: RVP 7.0-7.8 psi (EPA limit). Winter: 13.5-15 psi.

Storage Tank Venting (API 2000)

Breathing losses ∝ VP Higher vapor pressure → more evaporation → larger vent required Normal venting: - Thermal breathing (day/night T swing) - Filling/emptying operations - Use TVP at max storage temperature Emergency venting: - Fire case: VP at elevated T (per API 2000 Table 4) - Size for vapor generation rate at fire conditions

Relief Valve Sizing

Fire relief for liquid-full vessels:

References