Vapor pressure is the equilibrium pressure exerted by vapor over its liquid at a given temperature. Higher T → more molecules escape → higher VP.
Vapor pressure vs. temperature curves for water and light hydrocarbons; intersections with 14.7 psia mark normal boiling points.
Temperature
Exponential rise
VP roughly doubles every 20°F.
Molecular weight
Lighter = higher VP
Propane > Butane > Octane.
Polarity
H-bonding lowers VP
Water VP lower than MW suggests.
Boiling point
VP = 1 atm
Definition of normal boiling point.
Key Relationships
Clausius-Clapeyron (approximate):
ln(P₂/P₁) = (ΔHᵥₐₚ/R) × (1/T₁ - 1/T₂)
Trouton's Rule (estimate ΔHᵥₐₚ):
ΔHᵥₐₚ ≈ 10.5 × R × Tᵦₚ [kJ/mol]
Where: R = 8.314 J/mol·K, T in Kelvin
2. Antoine Equation
Antoine Equation:
log₁₀(P) = A - B/(C + T)
Where:
P = Vapor pressure (mmHg or bar, depends on constants)
T = Temperature (°C or K, depends on constants)
A, B, C = Compound-specific constants
Unit conversion:
mmHg → psia: divide by 51.715
mmHg → kPa: multiply by 0.13332
bar → psia: multiply by 14.504
Antoine equation accuracy regions: valid temperature ranges matter—outside them, use extended correlations or EOS.
Antoine Constants (NIST)
Compound
A
B
C
T Range (°C)
P units
Methane
6.61184
389.93
266.00
-181 to -161
mmHg
Ethane
6.80266
656.40
256.00
-142 to -75
mmHg
Propane
6.82973
803.81
247.04
-108 to -25
mmHg
n-Butane
6.82485
935.86
238.73
-78 to 19
mmHg
i-Butane
6.78866
899.81
241.94
-83 to 7
mmHg
n-Pentane
6.87632
1075.82
233.36
-50 to 58
mmHg
n-Hexane
6.87601
1171.17
224.41
-25 to 92
mmHg
n-Heptane
6.89386
1264.37
216.64
-2 to 124
mmHg
n-Octane
6.91874
1351.99
209.15
19 to 152
mmHg
Water
8.07131
1730.63
233.43
1 to 100
mmHg
Methanol
8.08097
1582.27
239.73
15 to 84
mmHg
Ethanol
8.11220
1592.86
226.18
20 to 93
mmHg
Source: NIST Chemistry WebBook. Always verify T range before use.
Example: n-Butane at 100°F
T = 100°F = 37.8°C
A = 6.82485, B = 935.86, C = 238.73
log₁₀(P) = 6.82485 - 935.86/(238.73 + 37.8)
= 6.82485 - 3.3843
= 3.4405
P = 10^3.4405 = 2,758 mmHg = 53.3 psia
→ n-Butane at 100°F: VP = 53.3 psia (requires pressure vessel)
⚠ Do not extrapolate. Antoine accuracy degrades rapidly outside the valid temperature range. For extended ranges, use Wagner equation or EOS models.
3. Mixtures (Raoult's Law)
Raoult's Law (ideal mixtures):
Pᵢ = xᵢ × Pᵢ° (partial pressure of component i)
P_total = Σ(xᵢ × Pᵢ°) (bubble point pressure)
yᵢ = xᵢ × Pᵢ° / P_total (vapor composition)
Where:
xᵢ = liquid mole fraction
Pᵢ° = pure component vapor pressure at T
yᵢ = vapor mole fraction
Raoult's Law P-x-y diagram for propane/butane at fixed temperature: bubble and dew curves with vapor richer in the lighter component.
Breathing losses ∝ VP
Higher vapor pressure → more evaporation → larger vent required
Normal venting:
- Thermal breathing (day/night T swing)
- Filling/emptying operations
- Use TVP at max storage temperature
Emergency venting:
- Fire case: VP at elevated T (per API 2000 Table 4)
- Size for vapor generation rate at fire conditions
Relief Valve Sizing
Fire relief for liquid-full vessels:
Step 1: Determine max T from fire heat input (API 521)
Step 2: Calculate VP at T_max using Antoine
Step 3: Size PSV for vapor generation at VP
References
NIST Chemistry WebBook – Antoine constants
ASTM D323 – Reid Vapor Pressure
API 2000 – Venting Atmospheric Storage Tanks
API 521 – Pressure Relief and Depressuring Systems