Pressure Relief & Drainage

Drain Orifice Sizing

Size blowdown orifices for vessel depressurization using compressible flow theory.

Discharge Coeff

Cd = 0.61

Sharp-edge orifice

Critical Ratio

0.53

k = 1.40 (air)

Blowdown Time

15-30 min

Typical gas service

Use this guide to:

  • Determine if flow is choked.
  • Size orifice for target blowdown time.
  • Select discharge coefficients.

1. Flow Regimes

Gas flow through an orifice is either subcritical (downstream pressure affects flow) or critical/choked (flow limited by sonic velocity).

Critical Pressure Ratio: P₂/P₁ = (2/(k+1))^(k/(k-1)) If actual P₂/P₁ < critical ratio → Flow is CHOKED If actual P₂/P₁ > critical ratio → Flow is SUBCRITICAL
Choked versus subcritical flow curve vs pressure ratio.
Choked vs subcritical flow curve versus pressure ratio.

Critical Ratios by Gas

Gas k (Cp/Cv) Critical Ratio Y (choked)
Air, N₂, O₂ 1.40 0.528 0.667
Hydrogen 1.41 0.527 0.669
Methane 1.31 0.545 0.651
Natural Gas 1.27–1.32 0.544–0.552 0.645–0.655
CO₂ 1.30 0.546 0.649
H₂S 1.32 0.544 0.653
Steam 1.33 0.543 0.655
Propane 1.13 0.575 0.615

Practical rule: Most blowdowns to atmosphere are choked. A 100 psig vessel venting to 0 psig has P₂/P₁ = 14.7/114.7 = 0.13, well below the critical ratio.

2. Design Equations

Gas Service — Choked Flow

Mass flow rate: W = Cd × Y × A × √(ρ₁ × ΔP × 2gc) Orifice area (solve for A): A = W / (Cd × Y × √(ρ₁ × ΔP × 2gc)) Expansion factor (choked): Y = √[k × (2/(k+1))^((k+1)/(k-1))] Where: W = Mass flow (lb/s) Cd = Discharge coefficient (0.61) Y = Expansion factor (0.65-0.67) A = Orifice area (ft²) ρ₁ = Upstream density (lb/ft³) ΔP = P₁ - P₂ (lbf/ft²) gc = 32.174 lbm·ft/(lbf·s²)
Orifice flow schematic showing vena contracta and pressure taps.
Orifice flow schematic showing vena contracta and pressure taps.

Gas Service — Subcritical Flow

Expansion factor (subcritical): Y = 1 - (0.41 + 0.35β⁴) × (ΔP/(k × P₁)) Where β = d/D (orifice to pipe diameter ratio)

Liquid Service

Volumetric flow: Q = Cd × A × √(2g × h) Or with pressure: Q = Cd × A × √(2 × ΔP / ρ) Where: Q = Flow rate (ft³/s) h = Head (ft of liquid) ΔP = Pressure drop (lbf/ft²) ρ = Liquid density (lb/ft³)

Blowdown Time

Approximate blowdown time: t = (ρ_avg × V) / W_avg For more accuracy, integrate over pressure decay: t = ∫(V × dρ) / W(P) Where: t = Blowdown time (seconds) V = Vessel volume (ft³) ρ_avg = Average gas density during blowdown W_avg = Average mass flow rate

3. Coefficients & Reference Data

Discharge Coefficients

Orifice Type Cd Application
Sharp-edge, corner taps 0.61 Standard drain orifice
Sharp-edge, flange taps 0.60 Metering orifice
Square-edge entrance 0.82 Pipe entrance
Rounded entrance (r/d>0.1) 0.98 Low-loss nozzle
Venturi / flow nozzle 0.99 Metering

Typical Orifice Sizes

Application Typical Size Design Consideration
Separator blowdown 1" – 2" Choked flow, noise
Pipeline blowdown 0.5" – 1.5" Line pack volume
Compressor scrubber 0.75" – 1.5" Auto-drain cycle
Tank drain (liquid) 2" – 4" Gravity flow

Standard Orifice Sizes

Diameter (in) Area (in²) Diameter (in) Area (in²)
0.250 0.0491 0.875 0.601
0.375 0.110 1.000 0.785
0.500 0.196 1.250 1.227
0.625 0.307 1.500 1.767
0.750 0.442 2.000 3.142

Expansion Factor Y (Choked Flow)

Use this table to find Y for choked flow based on gas specific heat ratio k.

k (Cp/Cv) Critical Ratio Y (choked) Typical Gas
1.10 0.585 0.600 Heavy hydrocarbons
1.15 0.573 0.615 Propane
1.20 0.564 0.629 Rich natural gas
1.25 0.555 0.640
1.30 0.546 0.649 Natural gas, CO₂
1.35 0.538 0.658
1.40 0.528 0.667 Air, N₂, O₂
1.45 0.520 0.675
1.66 0.487 0.725 Helium, Argon

Y = √[k × (2/(k+1))^((k+1)/(k-1))]

Critical Flow Properties by Gas

Gas MW k Critical Ratio Y
Air 28.97 1.40 0.528 0.667
Nitrogen (N₂) 28.01 1.40 0.528 0.667
Oxygen (O₂) 32.00 1.40 0.528 0.667
Methane (CH₄) 16.04 1.31 0.545 0.651
Natural Gas (0.65 SG) 18.8 1.27–1.32 0.544–0.552 0.645–0.655
Carbon Dioxide (CO₂) 44.01 1.30 0.546 0.649
Hydrogen Sulfide (H₂S) 34.08 1.32 0.544 0.653
Hydrogen (H₂) 2.02 1.41 0.527 0.669
Propane (C₃H₈) 44.10 1.13 0.575 0.615
Steam 18.02 1.33 0.543 0.655
Blowdown time versus orifice size curves.
Blowdown time versus orifice size curves for typical vessel volumes.

Quick Sizing Reference

Approximate blowdown times for natural gas (0.65 SG) from 100 psig to atmosphere at 80°F.

Vessel Volume 0.50" orifice 0.75" orifice 1.00" orifice 1.50" orifice
25 ft³ 5 min 2.2 min 1.3 min 0.6 min
50 ft³ 10 min 4.5 min 2.5 min 1.1 min
100 ft³ 20 min 9 min 5 min 2.2 min
250 ft³ 50 min 22 min 12.5 min 5.5 min
500 ft³ 100 min 45 min 25 min 11 min
1000 ft³ 200 min 90 min 50 min 22 min

Based on Cd = 0.61, choked flow. Times are approximate—use calculator for accurate sizing.

Blowdown Time Scaling

To adjust quick-sizing values for different conditions:

Parameter Change Effect on Time Example
Double vessel volume × 2.0 100→200 ft³: 20 min → 40 min
Double orifice area ÷ 2.0 0.5"→0.7" (2× area): 20 min → 10 min
Double pressure × 1.4 (approx) 100→200 psig: 20 min → 28 min
Heavier gas (higher MW) × √(MW₂/MW₁) NG→Propane: 20 min → 31 min
Higher temperature × √(T₂/T₁) 80°F→200°F: 20 min → 22 min

API 14E guidance: Size for 15-30 min blowdown (gas) or 30-60 min (liquid) unless process requirements dictate otherwise.

4. Worked Example

Problem: Size a blowdown orifice for a 100 ft³ separator at 100 psig to depressurize to atmosphere in 20 minutes.

Given

VolumeV = 100 ft³
Upstream pressureP₁ = 114.7 psia
Downstream pressureP₂ = 14.7 psia
GasNatural gas, SG = 0.65, k = 1.30
TemperatureT = 80°F = 540°R
Target timet = 20 min = 1200 s

Solution

Step 1: Check for choked flow Critical ratio = (2/(k+1))^(k/(k-1)) = (2/2.30)^(1.30/0.30) = 0.546 Actual ratio = P₂/P₁ = 14.7/114.7 = 0.128 0.128 < 0.546 → CHOKED FLOW ✓ Step 2: Calculate gas density MW = 28.96 × 0.65 = 18.8 lb/lbmol ρ = (P × MW)/(Z × R × T) = (114.7 × 18.8)/(0.95 × 10.73 × 540) = 0.392 lb/ft³ Step 3: Required mass flow Gas mass = ρ × V = 0.392 × 100 = 39.2 lb W_req = 39.2 lb / 1200 s = 0.0327 lb/s Step 4: Expansion factor (choked) Y = √[k × (2/(k+1))^((k+1)/(k-1))] = √[1.30 × (2/2.30)^(2.30/0.30)] = 0.649 Step 5: Calculate orifice area ΔP = 114.7 - 14.7 = 100 psi = 14,400 lbf/ft² A = W / (Cd × Y × √(2gc × ρ₁ × ΔP)) = 0.0327 / (0.61 × 0.649 × √(2 × 32.17 × 0.392 × 14,400)) = 0.0327 / (0.396 × 597) = 0.000138 ft² = 0.020 in² × 9.87 = 0.196 in² Step 6: Orifice diameter d = √(4A/π) = √(4 × 0.196 / 3.14) = 0.50 in Result: Use 0.5" (1/2") orifice

⚠ Notes: This simplified calculation uses average density. For accurate blowdown time, integrate over the pressure decay curve. Add 10-20% margin for fouling.

References

  • API RP 14E – Offshore Platform Piping Systems
  • ISO 5167-2 – Orifice Plates
  • Crane Technical Paper 410
  • GPSA, Section 6